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Simple Summary: Chronic kidney disease remains a global health priority, only detected at relatively
advanced stages by current markers. Identifying alternative markers for early detection is imperative.
In this study, we profiled the urinary proteome in patients with albuminuria and well-preserved
eGFR. We identified 80 proteins that were differentially abundant between the cases (albuminuria)
and controls (normoalbuminuria). Among these, 12 proteins (SERPINA1, ALB, SERPINC1, AFM,
PIGR, A1BG, COL6A1, MYG, LV39, MUC1, ICOSLG, and UMOD) had the highest discriminating
abilities (area under curve > 0.8) between the cases and controls. When differentially abundant
proteins were combined into an 80-protein model, the model was able to predict cases from controls
with a predictive accuracy of 91.3%. The top five enriched biological pathways associated with the
differentially abundant proteins included insulin growth factor functions, innate immunity, platelet
degranulation, and extracellular matrix organization.

Abstract: Albuminuria may precede decreases in the glomerular filtration rate (GFR) and both tests are
insensitive predictors of early stages of kidney disease. Our aim was to characterise the urinary proteome
in black African individuals with albuminuria and well-preserved GFR from South Africa. This case-
controlled study compared the urinary proteomes of 52 normoalbuminuric (urine albumin: creatinine ratio
(uACR) < 3 mg/mmol) and 56 albuminuric (uACR ≥ 3 mg/mmol) adults of black African ethnicity. Urine
proteins were precipitated, reduced, alkylated, digested, and analysed using an Evosep One LC (Evosep
Biosystems, Odense, Denmark) coupled to a Sciex 5600 Triple-TOF (Sciex, Framingham, MA, USA) in
data-independent acquisition mode. The data were searched on SpectronautTM 15. Differentially abundant
proteins (DAPs) were filtered to include those with a ≥2.25-fold change and a false discovery rate ≤ 1%.
Receiver–operating characteristic curves were used to assess the discriminating abilities of proteins of
interest. Pathway analysis was performed using Enrichr software. As expected, the albuminuric group
had higher uACR (7.9 vs. 0.55 mg/mmol, p < 0.001). The median eGFR (mL/min/1.73 m2) showed
no difference between the groups (111 vs. 114, p = 0.707). We identified 80 DAPs in the albumin-
uria group compared to the normoalbuminuria group, of which 59 proteins were increased while
21 proteins were decreased in abundance. We found 12 urinary proteins with an AUC > 0.8 and a
p < 0.001 in the multivariate analysis. Furthermore, an 80-protein model was developed that showed
a high AUC > 0.907 and a predictive accuracy of 91.3% between the two groups. Pathway analy-
sis found that the DAPs were involved in insulin growth factor (IGF) functions, innate immunity,
platelet degranulation, and extracellular matrix organization. In albuminuric individuals with a
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well-preserved eGFR, pathways involved in preventing the release and uptake of IGF by insulin
growth factor binding protein were significantly enriched. These proteins are indicative of a homeo-
static imbalance in a variety of cellular processes underlying renal dysfunction and are implicated in
chronic kidney disease.

Keywords: urinary proteomics; albuminuria; chronic kidney disease; biomarker

1. Introduction

Chronic kidney disease (CKD) affects between 9.1 and 13.4% of people and is one of
the main causes of death worldwide [1–3]. CKD often progresses silently and laboratory
tests are used to diagnose, stage, and monitor its improvement or progression [2].

According to the recently published Kidney Disease: Improving Global Outcomes
(KDIGO) clinical practice guidelines, CKD is defined as the presence of a reduced glomeru-
lar filtration rate (GFR) < 60 mL/min/1.73 m2 or albuminuria, defined as a urine al-
bumin:creatinine ratio (uACR) ≥ 3 mg/mmol) for more than 3 months [4]. However,
these markers have well-known limitations. Approximately 50% of the kidney function is
compromised when the eGFR falls below 60 mL/min/1.73 m2, thereby making patients
vulnerable to a risk of developing drug toxicity and metabolic and endocrine abnormalities
linked with declining kidney function [5]. As the GFR falls below this threshold, there is a
marked increase in the risk of kidney failure, cardiovascular complications, and all-cause
mortality [6,7].

Damage to the glomerular filtration barrier leads to impaired size and charge selectiv-
ity, causing albumin leakage [8]. Regardless of the cause of albumin leakage, data suggest
that albuminuria is not only a marker of kidney damage but also exerts a direct toxic
effect on renal tubules, resulting in progressive loss of function [9]. Some studies show a
moderate diagnostic accuracy of albuminuria for CKD, with a lack of sensitivity at low
levels [10–12]. Unfortunately, albuminuria often manifests after substantial kidney damage
has already occurred [13,14].

The identification of proteomic markers that are dysregulated in albuminuria could
allow the non-invasive evaluation of individuals at risk of CKD [15]. Early diagnosis and
understanding of the pathophysiological mechanism behind CKD progression remains
a critical area of research due to the limitations of the traditional markers. Proteomic-
based biomarkers have the potential to overcome the limitations of current markers for the
diagnosis of CKD. Analysis of the urinary proteome is attractive, as urine can be collected
non-invasively and in large quantities, and may reflect a biological process specific to the
kidney [16]. Proteomic-based analysis showed a higher diagnostic precision for CKD and a
better ability to identify patients with a rapid kidney function decline beyond the detection
of albuminuria in a Norwegian population [17]. In a cross-sectional study in the Chinese
population, urinary proteome profiling was able to differentiate uncomplicated diabetes
from diabetic nephropathy at different stages [18].

The discovery of proteins related to CKD has the potential not only to improve under-
standing of its pathophysiology and progression, but also to establish new markers for the
diagnosis of CKD [19]. Before such markers can be applied in clinical settings, multi-ethnic
studies should be conducted, especially in African populations, which are largely unrepre-
sented by the current literature. Limited or no studies have been published in South Africa
(SA) and Africa. A recent study from SA demonstrated the ability of urinary peptidomics
to discriminate normotensive from hypertensive individuals using a classifier that consists
of 20 urine peptides [20]. Another study in SA, using urinary proteomics coupled with
machine learning tools, showed that proteomics-based markers could classify participants
with hypertensive-associated albuminuria from healthy controls [21]. Identifying early
markers could significantly streamline efforts to delay progression towards end-stage renal
disease, especially in low-and middle-income countries experiencing a high burden of



Biology 2024, 13, 680 3 of 15

CKD with limited resources. Therefore, proteins associated with albuminuria can serve as
early-stage diagnostic markers for CKD. In this pilot study, the aim was to characterise the
urinary proteome in individuals with albuminuria with a well-preserved eGFR in a South
African cohort.

2. Materials and Methods
2.1. Ethics Statement

This study received approval (certificate number: M210128) from the Faculty of
Health Sciences Human Research Ethics Committee (Medical) at the University of the
Witwatersrand, Johannesburg, South Africa.

2.2. The Study Population

Our study was a sub-study of the African Research on Kidney Disease (ARK) study,
which had a population-based sample size of 2021 adults aged 20–80 years of self-identified
black ethnicity from rural Bushbuckridge in the Mpumalanga province, SA. The ARK
study aimed to determine the prevalence of CKD and its associated risk factors. Detailed
methods for the ARK study have already been published [22]. All demographic and
clinical information collected from this study was captured in REDCap (V.22.3.4, Vanderbilt
University, Nashville, TN, USA) [23]. For the present study, we included urine samples from
108 participants from the ARK study. We included participants with confirmed albuminuria
(cases) on repeated testing and normoalbuminuria (controls) groups, irrespective of their
estimated GFR and regardless of CKD risk factors. Cases and controls were age- and
sex-matched, with a 5-year range applied if the exact match was not achieved. Cases were
defined as having albuminuria (uACR ≥ 3 mg/mmol), while controls were defined as
normoalbuminuria (uACR < 3 mg/mmol), in line with the KDIGO guidelines [5]. In the
original study, apriori, participants were classified as being hypertensive (SBP ≥ 140 mm
Hg and/or diastolic blood pressure [DBP] ≥ 90 mm Hg) based on the 7th Report of the
Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High
Blood Pressure [24,25]. Diabetes was defined as a non-fasting glucose ≥ 11.1 mmol/L
and human immunodeficiency virus (HIV) status was recorded as positive if participant
knew their HIV status as positive. Voluntary HIV testing was offered to participants with
unknown status or who previously tested negative [25].

2.3. Clinical Laboratory Tests

Serum creatinine was measured using Jaffe’s method, traceable to isotope dilution
mass spectrometry, while urine albumin was measured using an immunoturbidimetry
method on a Roche analyzer (Roche Diagnostics, Mannheim, Germany). The eGFR was cal-
culated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation
2009 from serum creatinine without race correction, as suggested by the previous literature
from African populations [26].

2.4. Urine Protein Extraction

Urinary proteome preparation was performed using an in-house method as previously
described [21]. Briefly, four times (1600 µL), ice-cold 80% acetone was added to 400 µL of
urine in 2 mL protein Lo-Bind tubes (Eppendorf, Hamburg, Germany). After incubating at
−20 ◦C for 1 h, samples were centrifuged at 12,000× g for 30 min. The supernatant was
removed, and the pellet dried using a 70 ◦C heating block (AccuBlock Digital dry bath,
Labnet International Inc., Edison, NJ, USA) for 1 min. Pellets were resuspended in 100 µL
2% sodium dodecyl sulfate (SDS) and sonicated for 5 min. Proteins were reduced with
1 µL of 1M dithiothreitol (DTT) at 70 ◦C for 15 min, and thereafter transferred to a 40 ◦C
heating block for an additional 15 min, followed by alkylation with 6 µL of 500 mM iodoac-
etamide (IAA) for 30 min at room temperature (RT) in the dark. Proteins were on-bead
digested using MagResynTM HILIC microparticles (ReSyn Biosciences, Edenvale, South
Africa) using an automated workflow in a KingFisherTM Duo (Thermo Fisher Scientific,
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Rockford, IL, USA), as previously described [21]. The peptides were dried with a Cen-
triVap vacuum concentrator (Labconco, Kansas City, MO, USA) overnight, resuspended in
40 µL of 2% acetonitrile/0.2% formic acid, and stored at −80 ◦C until LC–MS/MS analysis.
Peptide quantification was done using the Pierce™ Quantitative Colorimetric Peptide As-
say (Thermo Fisher Scientific, Waltham, MA, USA) as per the manufacturer’s instructions.
A pooled sample from 10 patient urine samples was prepared and analysed alongside
individual samples as system quality control (QC) for this study. In addition, a commercial
Hela digest system suitability QC was analysed.

Tryptic peptides were analysed using an Evosep One LC system (Evosep Biosystems,
Odense, Denmark) interfaced to a SCIEX TripleTOF 5600 tandem mass spectrometer (Sciex,
Framingham, MA, USA) in data-independent acquisition (DIA) mode. An Evosep per-
formance column (EV1112, 15 cm × 75 µm, 1.9 µm) was used for the Whisper 40SPD
method. The Nanospray 3 source settings were as follows: CUR–20, GS1–30, ISVF–2900. Data
were acquired using 48 MS/MS scans of overlapping sequential precursor isolation windows
(variable m/z isolation width, 1 m/z overlap, high sensitivity mode), with a precursor MS scan
for each cycle. The accumulation time was 50 ms for the MS1 scan (from 400 to 1100 m/z) and
30 ms for each product ion scan (from 200 to 1800 m/z) for a 1.53 s cycle time.

A spectral library was built in SpectronautTM 15 software (Biognosys, Schlieren,
Switzerland). Default settings were used with minor adjustments as follows: segmented
regression was used to determine the normalized retention time (iRT) in each run; iRTs
were calculated as median for all runs; the digestion rule was set as “Trypsin” and modi-
fied peptides were allowed; fragment ions between 300 and 1800 m/z and peptides more
than three amino acids were considered; peptides with a minimum of 3 and maximum
of 6 (most intense) fragment ions were accepted. This study-specific spectral library was
combined with an in-house-generated urinary proteome spectral library (using in Spectro-
naut™ “Search Archives” feature). Raw (.wiff) data files were analysed using Spectronaut™
15 with default settings targeted analysis. These default settings included: dynamic iRT
retention time prediction with a correction factor for window 1; mass calibration was set to
local; decoy method was set as scrambled; the false discovery rate (FDR), according to the
mProphet approach [27], was set at 1% on the precursor, peptide, and protein group levels;
protein inference was set to “default”, based on the ID picker algorithm [28]; and global
cross-run normalization on the median was selected. The final urinary proteome spec-
tral library (peptides—20,616, protein groups—2604) was used as a reference for targeted
data extraction.

2.5. Retrospective Power Analysis

The appropriate fold-change cut-off for group comparisons was determined by per-
forming retrospective power analysis using the MSstats package (Northeastern Univer-
sity, MSstat 4.4.1, Bioconductor version: release 3.15, R v4.2.0). A group comparison
was performed to compare the protein changes between cases and controls. To achieve
desirable statistical power, parameters were: false discovery rate (FDR) = 0.01 (1%);
n = minimum sample size for each comparison was 52. At power = 80%, proteins that
showed a fold-change ≥ 2.25 were statistically significant.

2.6. Data Analysis and Pathway Analysis

The demographic and biochemical characteristics were analysed using STATA 17 SE
(Stata Corp, College Station, TX, USA) and GraphPad Prism 10 (GraphPad Software, San
Diego, CA, USA). Continuous and categorical variables were analysed by Mann–Whitney
U test and chi-square (χ2), respectively. The continuous variables are expressed as me-
dians (interquartile ranges), and categorical variables as proportions. A p-value < 0.05
was considered statistically significant. A volcano plot was generated using online data
analysis and visualization tool http://www.bioinformatics.com.cn/srplot (accessed on the
15 January 2024) and principal component analysis (PCA) was performed on Metaboanalyst
v.5.0 (https://www.metaboanalysts.ca/). Differentially abundant proteins between cases and
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controls were calculated by a two-sided t-test, with a minimum fold change ≥ 2.25 and p-values
adjusted for multiple testing by FDR at 1% from Spectronaut™ 15. Receiver–operating character-
istic (ROC) curves were generated using GraphPad Prism on all differentially abundant proteins
(DAPs) to identify putative marker proteins that differentiate albuminuria patients from those
without. Data were log-transformed, and interquartile range filtering and zero imputation strat-
egy was used. Normalization by median was performed. Multivariate ROC exploratory anal-
ysis was generated using the Monte Carlo cross-validation algorithm to identify proteins or
models with high sensitivity and specificity. In each validation algorithm, two-thirds of the
participant data were used to build a model, while the remaining one-third was used to
validate the model. This process was replicated several times to calculate the performance
and confidence intervals [29]. The results of the ROC curve analysis are reported as the
area under the curve (AUC) [30]. Functional enrichment analysis on DAPs was performed
using a free online tool, Enrichr/Enrichr-KG (https://maayanlab.cloud/Enrichr, accessed
on 20 January 2024), with the Reactome 2022 human database [31,32]. The top enriched
pathways (p < 0.05) were selected.

3. Results
3.1. Clinical and Demographic Characteristics of Patients

The baseline characteristics and biochemical variables of the study population are sum-
marized in Table 1. From the initial 116 participants selected for analysis, eight were excluded
post-data acquisition due to poor chromatographic separation or low peptide recovery. The
median age of the sample (n = 108) was 42 years, with 57% being female. There were signifi-
cantly more HIV-positive individuals (p = 0.033) in the albuminuric group, and the uACR was
significantly higher in this group (7.9 mg/mmol vs. 0.6 mg/mmol, p < 0.001).

Table 1. Baseline characteristics of participants.

Variable Total Cases (n = 56) Controls (n = 52) p-Value

Age, years 42 (30–54) 42 (30–55) 42 (31–53) 0.987
Women 61/108 (57) 32/56 (57) 29/52 (56) 0.886

BMI, kg/m2 25 (22–29) 25 (21–28) 25 (23–33) 0.428
Serum creatinine, µmol/L 63 (53–74) 63 (53–76) 63 (52–71) 0.550
eGFR, mL/min/1.73 m2 113 (95–124) 111(93–124) 114 (99–124) 0.707

uACR, mg/mmol 3.9 (0.6–8.4) 7.9 (5.5–18.5) 0.6 (0.30–1.1) <0.001
HPT status 12/108 (11) 8/45 (18) 4/46 (9) 0.439

Diabetes status 3/108 (2.7) 3/26 (12) 0/28 (0.0) 0.064
HIV status 35/108 (32) 22/56 (39) 13/52 (25) 0.033
Smoking 17/108 (16) 8/56 (14) 9/52 (17) 0.667

Glucose, mmol/L 6.3 (5.6–7.7) 6.3 (5.7–7.7) 6.4 (5.6–7.5) 0.848

Abbreviations: BMI: body mass index, SBP: systolic blood pressure, DBP: diastolic blood pressure, HPT: hyperten-
sion, HIV: human immunodeficiency virus, eGFR: estimated glomerular filtration (CKD-EPIcreatinine equation 2009
without correction for race), ACR: urine albumin–creatinine ratio. For continuous variables, data were reported as
median (from 25th to 75th percentile); for categorical variables, data were reported as number (n) of participants
and percentages (%). A p-value < 0.05 was considered statistically significant.

3.2. Performance of Study-Specific System Suitability-Quality Control

The performance of study-specific and commercial QCs (Hela) is shown in Supplementary
Materials Figure S1. The coefficient of variation (CV) at the protein-group level was 15% in the
Hela digest system suitability assessment and 14% for the urine pool over 5 days of analysis.
The CV at the peptide level was 18.2% and 17.5% for the Hela and urine pool tests, respectively.
The counts for the protein, peptide, and precursors remained consistent throughout the data
acquisition process (Supplementary Materials Figure S1A–F).

3.3. Differentially Abundant Proteins between Cases and Controls

The differentially abundant proteins (FDR ≤ 1%, fold-change ≥ 2.25) are shown in
Figure 1. Eighty urinary proteins (Supplementary Materials, Tables S1 and S2) were differ-
entially abundant between the groups. Among them, 59 urine proteins (74%) showed higher
abundance, while 21 proteins (26%) showed lower abundance in the cases compared to con-

https://maayanlab.cloud/Enrichr
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trols. PCA revealed modest clustering between the groups (Figure 2). The top 10 DAPs that
were in higher abundance (based on q values) in the cases comprised of alpha-1-antitrypsin
(SERPINA1), albumin, afamin, antithrombin III (SERPINC1), vitamin-D binding protein, alpha-1B
glycoprotein, beta-ala His dipeptidase, myoglobin, fibrinogen beta chain, and apolipoprotein
A-1 (Supplementary Materials Table S1). The top 10 DAPs found in lower abundance in the
cases (higher abundance in the control group) included polymeric immunoglobulin receptor,
collagen alpha-1(VI) chain, mucin-1, collagen alpha-1(XV), inducible costimulatory (ICOS) ligand,
collagen alpha-2(IV) chain, uromodulin, intercellular adhesion molecule, osteopontin, and platelet
endothelial cell adhesion (Supplementary Table S2).
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3.4. Potential Markers for Albuminuria and Normoalbuminuria Classification

ROC curve analysis was performed to evaluate the diagnostic potentials of differentially
abundant proteins. Using an AUC > 0.8 and a p-valve < 0.05 as criteria for diagnostic poten-
tial, 12 urine proteins were identified as potential markers for albuminuria (Figures 1, 3 and 4,
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Supplementary Materials Table S3). Among the 12 urine proteins, SERPINA1, albumin,
SERPINC1, and afamin exhibited AUCs greater than 0.9 (AUC = 0.951, 0.936, 0.920, 0.903,
respectively). Among the 12 urine proteins with the highest AUCs, seven proteins were
higher in abundance (SERPINA1, alpha-1B glycoprotein, albumin, afamin, SERPINC1,
myoglobin, and immunoglobulin lambda variable 3–9), while five proteins (polymeric
immunoglobulin receptor, collagen alpha-1(VI) chain, mucin-1, uromodulin, and inducible
costimulatory ligand) were lower in abundance, among the cases compared to controls.
Finally, a multivariate ROC curve analysis was performed using a combination of pro-
teins selected through logistic regression analysis, as shown in Figure 5a. All six urine
protein models had an AUC > 0.8. However, the first three models had wider confidence
intervals than models 3 and 4 (Figure 5a). The highest AUC of 0.907 (confidence interval
(CI): 0.836–0.954) was achieved with the sixth model, comprising 80 urine proteins
(Supplementary Materials Table S4). Among all models, the sixth model had the highest
predictive accuracy of 91.3% in classifying cases, even though the increase was modest
compared to the fourth and fifth urine protein models (Figure 5b).
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(b) The box-cum whisker plots show significantly different proteins between albuminuric and normoal-
buminuric patients. The box denotes interquartile ranges, and the bottom and top boundaries of boxes
are the 25th and 75th percentiles, respectively. Lower and upper whiskers correspond to the 5th and
95th percentiles, respectively. A horizontal line inside the box denotes the median. p value < 0.001 for
all proteins. SERPINA1: alpha-1 antitrypsin, ALB: albumin, SERPINC1: antithrombin III, AFM: afamin,
AIBG: alpha-1B-glycoprotein, MYG: myoglobin, LV39: immunoglobulin lambda variable 3–9. AUC: area
under the curve, CI: confidence interval.
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Figure 4. (a) The receiver–operating characteristic curves of the top five highly abundant proteins
in the normoalbuminuric group. The diagonal red dotted line reflects the performance that is no
better than chance. (b) The box-cum whisker plots show significantly different proteins between
albuminuric and normoalbuminuric patients. The box denotes interquartile ranges, and the bottom
and top boundaries of boxes are the 25th and 75th percentiles, respectively. Lower and upper
whiskers correspond to the 5th and 95th percentiles, respectively. A horizontal line inside the box
denotes the median. p value < 0.001 for all proteins, PIGR: polymeric immunoglobulin receptor,
COL6A1: collagen alpha-1(VI) chain, MUC-1: mucin-1, ICOSLG: inducible costimulatory ligand,
UMOD: uromodulin.



Biology 2024, 13, 680 9 of 15

Biology 2024, 13, x FOR PEER REVIEW 10 of 17 
 

 

and top boundaries of boxes are the 25th and 75th percentiles, respectively. Lower and upper whisk-
ers correspond to the 5th and 95th percentiles, respectively. A horizontal line inside the box denotes 
the median. p value < 0.001 for all proteins, PIGR: polymeric immunoglobulin receptor, COL6A1: 
collagen alpha-1(VI) chain, MUC-1: mucin-1, ICOSLG: inducible costimulatory ligand, UMOD: uro-
modulin. 

 
 

(a) (b) 

Figure 5. Multivariate ROC of six models and their predictive accuracies. (a) Performance of six 
models; and (b) predictive accuracies of all models for discriminating albuminuria from normoal-
buminuria. 

3.5. Functional Enrichment Analysis of Differentially Abundant Proteins 
Pathway analysis was performed by querying the Reactome library, within the Enri-

chr free online tool, to identify enriched pathways in which differentially abundant pro-
teins are involved. The significantly enriched functional pathways based on the FDR (≤1%) 
and p-value < 0.05 are illustrated in Supplementary Materials Figure S2 and Table S4. The 
top five highly enriched pathways for all DAPs included: the innate immune system, the 
regulation of insulin-like growth factor (IGF) transport and uptake by insulin-like growth 
factor binding proteins (IGFBPs), platelet degranulation, the response to elevated cyto-
solic Ca++, and haemostasis (Supplementary Materials Figure S2). In the biological func-
tion (GO) analysis for urinary proteins that showed higher abundance in the cases, the top 
five highly enriched terms were involved in the following biological processes (Figure 6): 
regulated exocytosis, platelet degranulation, high-density particle remodelling, the hy-
drogen peroxide catabolic process, and the hydrogen peroxide metabolic process. Some 
proteins that showed lower abundance among the cases were enriched in processes such 
as extracellular structure organization, extracellular matrix organization, and extracellu-
lar encapsulating structure organization, as well as in homophilic cell-adhesion molecules 
(Figure 7, Supplementary Materials Figure S3). 
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3.5. Functional Enrichment Analysis of Differentially Abundant Proteins

Pathway analysis was performed by querying the Reactome library, within the Enrichr
free online tool, to identify enriched pathways in which differentially abundant proteins
are involved. The significantly enriched functional pathways based on the FDR (≤1%)
and p-value < 0.05 are illustrated in Supplementary Materials Figure S2 and Table S4. The
top five highly enriched pathways for all DAPs included: the innate immune system, the
regulation of insulin-like growth factor (IGF) transport and uptake by insulin-like growth
factor binding proteins (IGFBPs), platelet degranulation, the response to elevated cytosolic
Ca++, and haemostasis (Supplementary Materials Figure S2). In the biological function
(GO) analysis for urinary proteins that showed higher abundance in the cases, the top
five highly enriched terms were involved in the following biological processes (Figure 6):
regulated exocytosis, platelet degranulation, high-density particle remodelling, the hy-
drogen peroxide catabolic process, and the hydrogen peroxide metabolic process. Some
proteins that showed lower abundance among the cases were enriched in processes such as
extracellular structure organization, extracellular matrix organization, and extracellular
encapsulating structure organization, as well as in homophilic cell-adhesion molecules
(Figure 7, Supplementary Materials Figure S3).
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4. Discussion

In this study which profiled the urinary proteome in Black African adults with albu-
minuria and well-preserved eGFR, we found 80 differentially expressed proteins when
comparing the albuminuric cases to non-albuminuric controls. Using multivariable anal-
ysis, we identified a combination of 80 proteins (AUC = 0.907) that outperformed other
models with a predictive accuracy of 91.3%, suggesting that a combination of markers may
offer added clinical utility compared to a single marker [33]. In this model, five proteins
(ALB, AFM, PIGR, A1AT, ANT3) were found to be differentially expressed, similarly to a
20-protein classifier identified in a South African study of hypertension-associated albu-
minuria [21] and in previous studies [34–36], suggesting generalisability of these markers
to different populations.

We observed a higher proportion of HIV-positive adults in the albuminuria group
compared to controls. HIV-infected individuals are likely to have kidney damage due
to direct virus-induced kidney injury or secondary antiretroviral therapy (ART) [37]. It
has previously been shown that the prevalence of albuminuria significantly increases,
ranging between 34 and 68%, in HIV-infected individuals compared to HIV-uninfected
controls [38,39].

Most DAPs were involved in pathways involving the innate immune system, the regula-
tion of IGF transport and uptake by IGFBPs, platelet degranulation, the response to elevated
cytosolic Ca++, and haemostasis. Dysregulation of the immune system and inflammatory
events have been postulated as key mechanisms in the pathogenesis of CKD [40]. Kidney in-
jury from any cause eventually evolves into CKD in the presence of unresolved inflammation.
Following kidney injury, damage-associated molecules initiate inflammatory responses such
as proinflammatory cytokine activation, and the subsequent infiltration of immune cells, such
as neutrophils, macrophages, and natural killer cells [41,42]. The role of IGFBPs in regulating
transcription, cell migration induction, and cell-cycle arrest, and preventing tissue renewal,
triggering apoptosis, is linked to the development of fibrosis in kidney disease [43]. Similarly
to the findings of this study, evidence indicates that IGFBPs are upregulated in various kidney
diseases [44–46]. One mechanism of action of IGFBPs is through binding to insulin-like growth
factor (IGF) [47]. IGF plays a significant role in enhancing kidney injury repair [47]. The
upregulation of pathways that prevent the release and actions of IGF is implicated in the
kidney in CKD [48]. The administration of sodium-glucose co-transporter 2 (SGLT2) inhibitors
has been shown to abolish the effect of IGFBP, especially IGFBP-7 [49]. This effect is believed
to be the main cause of the kidney-protective effect of SGLT2 inhibitors, independent of the
hypoglycaemic effect, in the treatment of type 2 diabetes [50].

We identified nine proteins that were linked to the activation of platelet degranulation
pathways. Among these, seven were increased in the albuminuric group. Participants
with CKD demonstrated increased platelet activation [51]. In addition to their role in
thrombosis, platelets appear to modulate inflammatory processes that are integral to the
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pathophysiology of CKD and its progression [39,47,48]. Importantly, other studies have
conflicting results of reduced platelet activation or unchanged platelet activation. However,
these studies mainly included patients on chronic dialysis and with uraemic syndrome.
The haemostasis and platelet degranulation pathways often occur together, which could
present an opportunity for treatment targets [52,53]. Furthermore, elevated cytosolic
calcium leads to the activation of protein kinase C (PKC), a hallmark of the response to
platelet degranulation. It is not surprising that pathways to the cytosolic calcium response
pathway are also highly enriched alongside platelet degranulation and haemostasis [40].
Coupled with inflammatory pathways, CKD is a highly oxidative state [54]. High levels
of oxidative stress have already been detected in the early stages of CKD, and increase
with the progression to end-stage renal disease [55,56]. These observations are supported
by highly enriched biological function processes associated with hydrogen peroxidase
catabolic and metabolic processes among the DAPs found in this study.

In keeping with the growing evidence, DAPs that were decreased in the albuminuria
group were enriched in processes such as extracellular structure organization, extracellular
matrix organization, and extracellular encapsulating structure organization, as well as in
homophilic cell-adhesion molecules. It is well-accepted that the accumulation of extracel-
lular matrix disrupts the cellular organisation and function of the kidney. An increase in
extracellular structure matrix proteins is a key finding in renal fibrosis [57,58]. Decreased
urinary uromodulin, osteopontin, and collagen fragments have all been implicated in
fibrosis-promoting processes in CKD [17,59]. There is mounting evidence that collagen
fragments, used as biomarkers, reflect structural changes in the renal extracellular matrix
(ECM) and provide insight into the progression of fibrosis [60]. We observed an increase in
urinary collagen alpha-1(III) in the albuminuria group while other collagen fragments were
low (i.e., collagen alpha-1(VI), collagen alpha-1(XV), collagen alpha-2(IV)). Different types
of collagen are involved in maintaining the integrity and function of the renal structure. The
upregulation of collagen III is regarded as an early event in renal fibrosis and is associated
with adverse CKD outcomes [61]. Elevated levels of collagen alpha-1(III) in the urine could
indicate an increased turnover or breakdown of collagen in the renal interstitium, possibly
as a result of kidney injury or inflammation [62]. While collagen type IV (COL VI), a major
component of basement membranes, is crucial for maintaining the structural integrity of the
glomeruli, studies have shown high urinary COL VI levels, especially in diabetic patients,
compared to healthy controls [63,64]. The reduced urinary COL VI found in this study may
partly be explained by a shift in a deposition associated with the severity of the disease
in favour of degradation. This may be due to reduced matrix metalloproteases activity
and the increased cross-linking of collagen fibres that render them resistant to proteolytic
processes [60,65,66].

Similarly, other studies found a lower abundance of urine UMOD in the cases than in
controls [67,68]. The reduced levels are believed to be secondary to tubular dysfunction [69].
Similarly, in the South African study of hypertensive-associated albuminuria, UMOD was
found in lower abundance [21]. UMOD, a mucoprotein synthesized by the thick ascending
loop of Henle, has been shown to be a marker of renal reserve and plays an important role
in the innate immunity of the kidney [59,70]. Low urine UMOD levels have been associated
with acute kidney injury and its progression to CKD [71].

This case-control study characterized the urinary proteome in South African par-
ticipants with and without albuminuria. Most of the urinary proteins identified in this
study have also been found in a variety of diseases related to kidney conditions, such
as glomerulonephritis, diabetic nephropathy, and hypertension, to name a few. Despite
the diverse causes of kidney damage, commonalities in upregulated or downregulated
pathways suggest that therapeutic targeting of these pathways may be crucial in preventing
kidney progression, regardless of the underlying cause. The main limitation of this study
was the analysis of a single cohort. The findings need to be verified in a larger and more
diverse cohort of patients to ensure applicability to a wider population.
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5. Conclusions

Pathway analysis suggested significant enrichment in innate immune pathways,
platelet degranulation, IGF, and IGFBPs, as well as in haemostasis. Urine proteins that were
in lower abundance were involved in pathways associated with the extracellular matrix.
This information can be utilized to discern potential molecular mechanisms underlying
kidney damage and its progression to severe stages of chronic kidney disease (CKD). Addi-
tionally, urine proteins such as SERPINA1, Alb, SERPINC1, AFM, PIGR, A1BG, COL6A1,
MYG, LV39, MUC1, ICOSLG, and UMOD had the highest discriminating abilities between
cases and controls. Our study identified an 80-protein model that was able to classify
albuminuria from normoalbuminuria with well-preserved GFR with a predictive accuracy
of 91.3%.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology13090680/s1, Figure S1: Project suitability quality control;
Figure S2: Network Analysis (Reactome library) through Enrichr-KG; Figure S3: Enrichr-KG gene
set enrichment analysis. GO biological-Enrich-KG: most of the proteins are involved in extracellular
structure and matrix organization. Pink denote GO biological process terms. Green denotes genes.
Table S1: High abundant dysregulated proteins in albuminuria; Table S2: Low abundant dysregulated
proteins in albuminuria group; Table S3: ROC curve analysis of all abundant proteins; Table S4: List
of genes in each biological process.
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