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Background: Genome-wide association studies (GWAS) have predominantly
focused on populations of European and Asian ancestry, limiting our
understanding of genetic factors influencing kidney disease in Sub-Saharan
African (SSA) populations. This study presents the largest GWAS for urinary
albumin-to-creatinine ratio (UACR) in SSA individuals, including
8,970 participants living in different African regions and an additional
9,705 non-resident individuals of African ancestry from the UK Biobank and
African American cohorts.

Methods: Urine biomarkers and genotype data were obtained from two SSA
cohorts (AWI-Gen and ARK), and two non-resident African-ancestry studies (UK
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Biobank and CKD-Gen Consortium). Association testing and meta-analyses were
conducted, with subsequent fine-mapping, conditional analyses, and replication
studies. Polygenic scores (PGS) were assessed for transferability across populations.

Results: Two genome-wide significant (P < 5 × 10−8) UACR-associated loci were
identified, one in the BMP6 region on chromosome 6, in the meta-analysis of
resident African individuals, and another in the HBB region on chromosome 11 in
the meta-analysis of non-resident SSA individuals, as well as the combined meta-
analysis of all studies. Replication of previous significant results confirmed
associations in known UACR-associated regions, including THB53, GATM, and
ARL15. PGS estimated using previous studies from European ancestry, African
ancestry, and multi-ancestry cohorts exhibited limited transferability of PGS
across populations, with less than 1% of observed variance explained.

Conclusion: This study contributes novel insights into the genetic architecture of
kidney disease in SSA populations, emphasizing the need for conducting genetic
research in diverse cohorts. The identified loci provide a foundation for future
investigations into the genetic susceptibility to chronic kidney disease in
underrepresented African populations Additionally, there is a need to develop
integrated scores using multi-omics data and risk factors specific to the African
context to improve the accuracy of predicting disease outcomes.
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Introduction

Chronic kidney disease (CKD) is a leading risk factor for years of
life lost and premature mortality, with a 41.5% relative increase in
mortality worldwide from 1990 to 2017 (GBD Chronic Kidney
Disease Collaboration et al., 2020; Kovesdy, 2022). The estimated
global prevalence of CKD is 9.1% and while predicted to be higher in
Sub-Saharan Africa (SSA), the true prevalence and associated risk
factors remain understudied (Kaze et al., 2018; GBDChronic Kidney
Disease Collaboration et al., 2020). The Africa Wits-INDEPTH
partnership for Genomic Studies (AWI-Gen) cohort, which
included ~12,000 participants from four SSA countries in West,
East, and Southern Africa, reported overall CKD prevalence as
10.7% (95% confidence interval [CI]: 9.9–11.7), with notable
geographic regional differences. The most important risk factors
for CKD in SSA were older age, female sex, diabetes, hypertension,
and human immunodeficiency virus (HIV) infection (George
et al., 2019).

Over the past decade, genome-wide association studies (GWAS)
have identified numerous genetic loci associated with kidney
function, namely, estimated glomerular filtration rate [eGFR],
serum creatinine, and urine albumin-creatinine ratio [UACR]
(Böger et al., 2011; Pattaro et al., 2012; 2016; Teumer et al., 2016;
2019; Hellwege et al., 2019; Tin and Köttgen, 2020). The majority of
the GWAS for kidney function and disease have examined
associations with eGFR, while UACR, as a measure for
albuminuria, has been investigated less often (Mahajan et al.,
2016; Pattaro et al., 2016; Gorski et al., 2017; Haas et al., 2018;
Teumer et al., 2019;Wuttke et al., 2019; Zanetti et al., 2019). A recent
GWAS in 564,257 individuals of multi-ancestry origins identified
68 associated risk loci for UACR and proposed a priority list of genes
to explore as targets for the treatment of albuminuria (Teumer
et al., 2019).

While the majority of kidney disease-associated risk loci have
been identified in studies on participants of European and East
Asian ancestry, and the African diaspora (Lee et al., 2018), few have
focused on participants living in SSA (Böger et al., 2011; Pattaro
et al., 2012; Lin et al., 2019; Morris et al., 2019). Recently, a study of
genetic associations of eGFR in a Ugandan population-based cohort,
(Fatumo et al., 2020), replicated the association between eGFR and
the GATM locus.

Replication and transferability of GWAS signals across
populations of different ancestries, and specifically with African
ancestry populations, tend to be poor despite regional replication
often identifying shared associated genomic regions (Pattaro et al.,
2012). This may be due to differences in linkage disequilibrium (LD)
with the causal variant, allele frequency differences between the
populations, underlying population structure, and variabilities in
environmental exposures. African populations, with their great
genetic diversity and deep evolutionary roots, represent an
opportunity for genetic discovery to identify and fine-map
disease-associated risk variants (Gomez et al., 2014; Pereira
et al., 2021).

Polygenic scores (PGS) are used to quantify and stratify
populations according to genetic risk. A PGS based on 63 eGFR-
associated alleles showed significant association with kidney disease-
related phenotypes, such as chronic kidney failure and hypertensive
kidney disease in the Million Veteran Study (US) on 192,868 white
and non-Hispanic individuals (Hellwege et al., 2019). A PGS based
on 64 urine UACR associated alleles was significantly associated
with CKD (Teumer et al., 2019). Further analysis revealed positive
associations of the PGS with an increased risk of hypertension (HT)
and diabetes. However, PGS often translate poorly across different
ancestries (Martin et al., 2017; Kamiza et al., 2022; Kachuri et al.,
2023). Since most published GWAS for kidney disease and kidney
function markers are based on European ancestry populations, the
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predictive accuracy of models developed from these studies is
expected to be significantly diminished for African populations
(Adam et al., 2022; Choudhury et al., 2022; Kamiza et al., 2023;
Majara et al., 2023).

In this study, we present a GWAS for UACR conducted within
resident Sub-Saharan African individuals. This population cross-
sectional study includes a cohort of 8,970 individuals from four SSA
countries from the AWI-Gen study (Ali et al., 2018), the African
Research on Kidney Disease (ARK) study (Kalyesubula et al., 2020),
with 9,705 individuals of African-ancestry from the UK Biobank
(UKB) and African American participants from the CKD-Gen
Consortium (Teumer et al., 2019). The primary objectives are to:
(1) identify genetic loci associated with UACR as a marker of kidney
disease in individuals from SSA and of African ancestry; (2) explore
the replication of findings identified in previous GWAS; (3) perform
analysis and comparison of PGS derived from non-African and
multi-ancestry population studies and evaluate their transferability
to African populations.

Participants and methods

Study participants

Africa Wits-INDEPTH partnership for genomic
research (AWI-Gen)

The study participants are a subset of the population cross-
sectional AWI-Gen study (Ramsay et al., 2016; Ali et al., 2018). The
study recruited adults primarily between the ages of 40 and 80 years
from six SSA study sites in West Africa (Nanoro, Burkina Faso and
Navrongo, Ghana), East Africa (Nairobi, Kenya) and in South Africa
(Bushbuckridge - hereinafter referred to as Agincourt, Mpumalanga
Province; Dikgale, Limpopo Province; and Soweto, Gauteng). All
participants were of self-identified black ethnicity. Data collection
was described in detail previously (Ali et al., 2018; George et al.,
2019). Detailed demographic data, health-related questionnaire
data, and anthropometric measurements were collected.
Peripheral blood samples and urine samples were collected for
biomarker assays (the relevant assays are described below). DNA
was extracted from peripheral blood-derived buffy coat samples and
used for genotyping. Urine albumin was measured using a
colorimetric method on the Cobas© 6000/c501 analyzer, and
urine creatinine was measured by the modified Jaffe method
(Craik et al., 2023). This study was approved by the Human
Research Ethics Committee (Medical), University of the
Witwatersrand, South Africa (M121029, M170880) and the ethics
committees of all participating institutions. All participants
provided written informed consent following community
engagement and individual consenting processes.

African research on kidney disease (ARK)
The African Research Kidney Disease (ARK) study is a well

characterised population-based cohort study of 2021 adults
(20–80 years) of self-identified black ethnicity from Agincourt,
(Mpumalanga, South Africa) with demographic data, health-
related questionnaire data, and anthropometric measurements
collected at enrolment (Fabian et al., 2022). Blood and urine
were collected for biomarker assays (the relevant assays are

described below). DNA was extracted from buffy coat samples
and used for genotyping. Urine albumin was measured using a
colorimetric method on the Cobas© 6000/c501 analyzer, and urine
creatinine was measured by the modified Jaffe method (Craik et al.,
2023). This study was approved by the Human Research Ethics
Committee (Medical), University of the Witwatersrand, South
Africa (M160939). All participants provided written informed
consent following community engagement and individual
consenting processes. The geographical area of recruitment
overlaps with the Agincourt sub-cohort of AWI-Gen but there is
no overlap in participants.

UK-Biobank (UKB)
Individuals of self-reported Caribbean and African ancestry

from the UKB were identified for this study. Of this subset of
UKB individuals, those with both genotyping and UACR data were
retained for the analysis. UACR was derived using urinary levels of
albumin and creatinine. In the UKB, albumin was measured using
the immuno-turbidimetric analysis method (Randox Biosciences,
UK) while creatinine was measured using the enzymatic analysis
method (Beckman Coulter, UK) (Casanova et al., 2019).

Phenotype generation and harmonization

UACR was calculated for AWI-Gen and ARK studies using
urinary levels of albumin and creatinine as previously described
(George et al., 2019; Fabian et al., 2022). Participants with missing
values for albumin and creatinine were excluded from this study.We
applied filtering criteria similar to those employed by the CKD-Gen
consortium (Köttgen and Pattaro, 2020). In cases where the values
for urine albumin and urine creatinine fell outside the upper and
lower limits of detection, the values were replaced with the respective
upper and lower limits: for urine creatinine, the range was
3–400 mmol/L and for urine albumin, the range was
3.75–475 mg/L for AWI-Gen and ARK. For the UKB dataset, the
upper limit was 6.7 mg/L for urine albumin. Albuminuria was
defined as UACR >3.0 mg/mmol.

Genotyping

AWI-Gen and ARK
Genomic DNA was genotyped using the H3Africa custom

genotyping array. The H3Africa custom array was designed as an
African-common-variant-enriched GWAS array (https://www.
h3abionet.org/h3africa-chip) (Illumina) with ~2.3 million single
nucleotide polymorphisms (SNPs).

UK-Biobank
Genotyping was performed by Affymetrix on two closely related

purpose-designed arrays. ~50,000 participants were genotyped
using the UK BiLEVE Axiom array (Resource 149,600) and the
remaining ~450,000 were genotyped using the UK Biobank Axiom
array (Resource 149,601). The dataset is a combination of results
from both arrays. A total of 805,426 markers were released in the
genotype data. We extracted individuals with self-reported (Data-
Field in dataset 21,000) African Ancestry split between African
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(UKB-African) and Caribbean origins (UKB-Caribbean) from the
raw dataset (Casanova et al., 2019).

Quality control
For each dataset, AWI-Gen (Choudhury et al., 2022), ARK and

UKB, the following pre-imputation quality control (QC) steps were
applied: removal of non-autosomal and mitochondrial SNPs; SNPs
with genotype missingness greater than 0.05; minor allele frequency
(MAF) less than 0.01; and Hardy-Weinberg equilibrium (HWE)
p-value less than 0.0001. Individuals were excluded if they had
more than 5% overall genotype missingness; heterozygosity lower
than 0.150 and higher than 0.343; and discordant genotype and
phenotype sex information. We used the GWAS QC workflow of
the H3Africa Consortium Pan-African Bioinformatics Network to
perform data QC (H3ABioNet H3AGWAS) (https://github.com/
h3abionet/h3agwas) (Baichoo et al., 2018; Brandenburg et al., 2022a).

In our final QC step, we identified and excluded outliers,
admixed and related individuals using PCASmart, a feature of
the EIGENSOFT software (Price et al., 2006), Admixture
software (Alexander et al., 2009) using AGV (Gurdasani et al.,
2015) and 1000 Genomes Project data (Auton et al., 2015) and
PLINK (Version 1.9) (Purcell et al., 2007; Chang et al., 2015). More
detail on filter parameters for each software can be found in
Supplementary Table S1.

Imputation
Genotype imputation was performed on each dataset separately

(AWI-Gen, ARK, and UKB) using the Sanger Imputation Server
with the African Genome Resources reference panel (https://www.
sanger.ac.uk/tool/sanger-imputation-service/). EAGLE2 was used
for pre-phasing and the PBWT algorithm was used for
imputation (Loh et al., 2016). After imputation, poorly imputed
SNPs with info scores less than 0.3 and with a HWE p-value less than
1 × 10−04 were removed. The genomic positions were mapped
to GRCh37p11.

Phenotype transformation for association testing
For AWI-Gen, ARK, and UKB datasets, UACR was transformed

on the logarithm scale. Linear regression of variables was performed
with covariates in R (Version 3.6): ln (UACR) ~age + sex + genetic
principal components (PCs) 1-5. Residuals were extracted and
transformed using Rank-Based Inverse Normal Transformation
to ensure the normal distribution of residuals (Casanova et al.,
2019). PCs were calculated using a sub-set of LD pruned pre-
imputed SNPs in PLINK (Version 1.9) (Purcell et al., 2007;
Chang et al., 2015). The sub-set was derived by LD pruning
using PLINK (Version 1.9) (Purcell et al., 2007; Chang et al.,
2015) with an LD (r2) threshold of 0.2 with windows of 50 kb
and 10 kb for step size.

Association testing
Mixed model association testing was performed with imputed

genotype probabilities using GEMMA (Version 0.98.1) (Zhou and
Stephens, 2012). GEMMA uses a relatedness matrix to account for
genetic structure and relatedness between individuals. The relatedness
matrix was built with a sub-set of pre-imputed SNPs described above.

Mixed model association testing was performed independently
on each dataset. A total of nine datasets were tested. The datasets

were defined as follows: six datasets for AWI-Gen: AWI-Agincourt,
AWI- Dikgale, AWI-Nanoro, AWI-Nairobi, AWI-Navrongo and
AWI-Soweto; one dataset for ARK: ARK-Agincourt; and two
datasets for UK Biobank: UKB-Caribbean and UKB-African. For
each dataset, Quantile-to-quantile plots (QQ-plots) were generated,
and inflation factors were calculated using SNPs with MAF>0.01 to
verify that the association signals were not inflated due to
unaccounted population sub-structure. The genome-wide
significance level for novel discovery was considered at P < 5 × 10−08.

CKD-Gen
We used previously published meta-analysis summary statistics

from the CKD-Gen Consortium. The CKD-Gen Consortium
datasets consist of three meta-analysis summary statistics: 1)
CKD-Gen European ancestry individuals (CKD-Gen-EA); 2)
CKD-Gen African American ancestry individuals (CKD-Gen-
AA); and 3) CKD-Gen multi-ancestry individuals (CKD-Gen-
MA) which include individuals from CKD-Gen-EA and CKD-
Gen-AA (Teumer et al., 2019). The CKD-Gen Consortium meta-
analysis summary statistics were retrieved from http://ckdgen.imbi.
uni-freiburg.de/.

Briefly, CKD-Gen-AA is a meta-analysis based on 7 studies with
African American participants. For each study, genotyping was
performed using genome-wide arrays followed by application of
study-specific quality filters prior to phasing, imputation, and
association analysis software [description can be found in
Supplementary Tables 1, 2 from (Teumer et al., 2019)]. Meta-
analysis was performed using fixed effects inverse-variance
weighted meta-analysis of the study-specific GWAS result files
with imputation quality (IQ) score> 0.6 and MAC> 10, effective
sample size ≥ 100, and a beta < 10, using METAL [for more details
see (Teumer et al., 2019)].

Meta-analysis

Fixed-effect meta-analyses were conducted using the
METASOFT software (Han and Eskin, 2011). The first meta-
analysis (MetaSSA) used the GWAS summary statistics
generated from individual-level data from resident SSA
populations. This included AWI-Agincourt, AWI-Dikgale,
AWI-Nanoro, AWI-Nairobi, AWI-Navrongo, AWI-Soweto and
ARK-Agincourt. The second meta-analysis (MetaNONRES)
included data from individuals of African ancestry who are not
residing in SSA. We used the GWAS summary statistics generated
from individual-level data from the UK-Biobank (UKB-African
and UKB-Caribbean) and CKD-Gen African American sub-set
(CKD-Gen-AA). The third meta-analysis (MetaALL) consisted of a
meta-analysis that pooled the summary statistics of all studies from
AWI-Agincourt, AWI-Dikgale, AWI-Nanoro, AWI-Nairobi,
AWI-Navrongo, AWI-Soweto, ARK-Agincourt, UKB-African,
UKB-Caribbean and CKD-Gen-AA. Figure 1 outlines the meta-
analysis workflow. As a secondary analysis, the role of
heterogeneity had been investigated between cohorts from
different regions of origin by performing separate meta-analyses
for residents of Southern African (AWI-Agincourt, AWI-Dikgale,
AWI-Soweto, and ARK-Agincourt) and residents of West Africa
(AWI-Nanoro, AWI-Navrongo). Random-effects model from
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METASOFT (Han and Eskin, 2011) took into account potential
heterogeneity between study sites, we performed Meta RE using all
dataset (MetaALL

RE) (Borenstein et al., 2010; Nikolakopoulou et al.,
2014). The genome-wide significance level for novel discovery was
considered at P < 5 × 10−08.

Post association analysis

Plotting
QQ-plots and Manhattan plots were generated using the

FastMan library (Paria et al., 2022) (available at https://github.

FIGURE 1
Study design showing data sources, the analysis strategy and post-GWAS analysis approach.
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com/kaustubhad/fastman) and the Hudson library (available at
https://github.com/anastasia-lucas/hudson). These visualizations
were created using SNPs with a MAF threshold of 0.01 or more.
For regional plots, we utilized the standalone version of the
LocusZoom software (Pruim et al., 2010).

Genetic LD reference
For the estimation of the LD reference panel for conditional and

joint (COJO) analysis, clumping, and fine-mapping, three LD
reference panels were constructed using genotype data from the
appropriate datasets. For resident SSA dataset comparisons, the LD
reference panel (LDSSA) was constructed using AWI-Gen and ARK
individual-level genotype data. For non-resident SSA dataset
comparisons, the LD reference panel (LDNONRES) was
constructed using UKB individual-level genotype data. For the
combined datasets comparison, the LD reference panel (LDALL)
was constructed using AWI-Gen, ARK, and UKB individual-level
genotype data.

Fine-mapping and lead SNPs
For each locus with a lead SNP with a p-value below 5 × 10−08,

fine-mapping was conducted using the H3ABioNet H3AGWAS
pipeline and implementing a stepwise model selection procedure
through GCTA (Yang et al., 2011; 2012; Brandenburg et al., 2022a)
to identify independently associated SNPs. Subsequently, we utilized
the FINEMAP software (Version 1.4) (Benner et al., 2016),
considering one causal variant, to define the credible set with
99% confidence using a stochastic approach (Benner et al., 2016).

Conditional analyses (GCTA)
Conditional analyses used the GCTA software implemented

within the H3AGWAS pipeline, with summary statistics obtained
from the meta-analyses as input. In these analyses, the lead SNPs
identified in each meta-analysis were conditioned upon lead SNPs
found in previously published studies. Changes in the p-value, both
increasing or decreasing significance, of the lead SNP, confirmed a
relationship between the two SNPs.

Replication of previous findings
Replication was performed according to the following criteria:

1) Exact replication: if any genome-wide significant lead SNPs
found in CKD-Gen-EA and CKD-Gen-MA reached statistical
significance (p < 0.05) in MetaSSA, MetaNONRES or MetaALL
after Bonferroni correction (A total of 60 independent lead
SNPs were identified in the CKD-Gen datasets, of which
55 lead SNPs were from CKD-Gen-EA and 57 lead SNPs were
from CKD-Gen-MA) and that the lead SNPs have same direction
of effect. 2) LD Window replication: for a given genome-wide
significant SNP found in the CKD-Gen datasets, SNPs were
extracted from MetaSSA, MetaNONRES and MetaALL that are in
LD with the said CKD-Gen lead SNP. LD pruning used the clump
procedure in PLINK (Version 1.9) (r2 = 0.1, windows size 1000 kb,
P1 = 5 × 10−08, P2 = 0.1). The lowest p-value(s) from SNPs within
the given LD window were extracted and this LD window was
considered statistically significant if the p-value was less than 5 ×
10−04 in both datasets. Additionally, the direction of effect between
the CKD-Gen and Meta-datasets (MetaSSA, MetaNONRES and
MetaALL) must be consistent. Conditional analyses were

performed between the genome-wide significant SNP(s) in
CKD-Gen and lead SNP in our meta-analyses to confirm the
replication.

For replication, the findings from MetaSSA were compared to
CKD-Gen-MA and CKD-Gen-EA, and the findings from
MetaNONRES and MetaALL were only compared to CKD-Gen-EA
to avoid sample overlaps within the CKD-Gen datasets (as CKD-
Gen-AA is contained within CKD-Gen-MA).

Annotation and expression quantitative trait locus
(eQTL) analysis

Functional annotation of genome-wide significant SNPs found
in MetaSSA, MetaNONRES and/or MetaALL was done using the
ANNOVAR software (Wang et al., 2010). eQTL analysis was
performed using the database of cis-eQTLs in both glomerular
and tubulointerstitial tissues, derived from participants in the
Nephrotic Syndrome Study Network (NEPTUNE) using SNPs
with false discovery rate (FDR) < 0.05 (Han et al., 2023). In this
analysis a 1000 kb window was defined around each genome-wide
significant locus and an eQTL was considered significant if the LD
(r2) was ≥0.01 between the lead SNP and significant eQTL, LD
computation used the genetics data from the African populations
from the 1000 Genomes Project (v5a, hg19) (Auton et al., 2015;
Sudmant et al., 2015).

Polygenic scores
PGS were computed for each dataset independently (AWI-

Agincourt, AWI-Dikgale, AWI-Nanoro, AWI-Nairobi, AWI-
Navrongo, AWI-Soweto, ARK-Agincourt, UKB-African, and
UKB-Caribbean). The effect sizes from 3 previous studies
were used: CKD-Gen-AA, CKD-Gen-MA, and CKD-Gen-EA.
PRS-CS (Ge et al., 2019), software that estimates posterior SNP
effect sizes by implementing continuous shrinkage (CS) priors,
was used to calculate the PGS. As external LD references are
required for this analysis, the African LD data derived from the
1000 Genomes Project by the PRScs project was used for this
purpose (accessible at https://github.com/getian107/PRScs).
The PGS values were regressed against the residualized UACR
value in a linear regression model that adjusted for age, sex, and
the first five principal components to assess the
performance of PGS.

Results

Study participants and phenotype data

Genomic and phenotypic data were accessible for
7,959 individuals in the AWI-Gen datasets, 1,011 individuals in
the ARK dataset, and 2,916 individuals in the UK-Biobank dataset
with 1,205 individuals and 1,711 individuals in UKB-African and
UKB-Caribbean respectively (Supplementary Figure S1). CKD-Gen
AA was a meta-analysis of 7 studies including 6,795 individuals in
total. Overall, there was a higher prevalence of albuminuria (17.9%;
median UACR 1.01 mg/mmol) among individuals from the UKB
with African and Caribbean ancestry compared to individuals
residing in SSA, where notable regional differences were
observed. The highest prevalence of albuminuria occurred in
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AWI-Agincourt, South Africa (14.1%; median UACR 0.59 mg/
mmol) while the lowest prevalence occurred in AWI-Nanoro,
West Africa (prevalence of albuminuria 4.5%, median UACR
0.35 mg/mmol) (Table 1).

Meta-analysis

Meta-analyses were conducted to investigate the genetics of UACR
in resident Sub-Saharan African datasets (MetaSSA) (Figure 2A), non-
resident Sub-SaharanAfrican datasets (MetaNONRES) (Figure 2B) and all
African ancestry datasets (MetaALL) (Figure 2C).

No genomic inflation was observed for the individual-dataset
association testing performed on the 9 datasets. All genomic
inflation factors (lambda) were below 1.1. This was visually
confirmed on the dataset specific QQ-plots and Manhattan plots
(Supplementary Figure S2; Supplementary Figures S3A–I). Dataset-
specific significant findings are reported in Supplementary Table S2;
Supplementary Figures S4A–C.

One genome-wide significant locus with the lead SNP rs9505286
(p = 4.3.10−08) was identified in MetaSSA on chromosome 6.
(Figure 3A). One genome-wide significant locus with the lead

SNP rs73404549 was identified on chromosome 11 in
MetaNONRES (p = 5.6.10−11) and MetaALL (p = 7.7 10−13) (Table 2;
Figures 3B, C).

SNP rs9505286 (chr6:7820353) is located in the intronic
region of BMP6. Two SNPs were identified in the 95%
credible set using FINEMAP (Figure 3A; Supplementary Table
S4). eQTLs in the region were found to be associated with the
expression of two genes RREB1 and BMP6 (Table 2;
Supplementary Figure S5; Supplementary Table S3;
Supplementary Table S5).

SNP rs73404549 (chr11:5320654) is located near the HBE1,
OR51B4, and HBB genes. This signal is primarily driven by
results from West African ancestry datasets in the MetaNONRES
andMetaALL (Figures 3B, C; Supplementary Figure S6). Notably, this
SNP is monomorphic in the Southern African and East African
datasets. Furthermore, rs73404549 is in LD with rs334 (r2 = 0.52;
72,422 bp apart), the SNP that defines the sickle cell mutation (HbS).
SNP rs334 was also significant in MetaALL (PALL = 8.55 × 10−9).

In the window of 1000 kb around rs73404549, SNPs in the
region colocalized with gene expression of TRIM6 and STIM1 in
glomerular and tubulointerstitial tissues (Table 2;
Supplementary Table S5).

TABLE 1 Study participants and phenotype data. Participant characteristics for each AWI-Gen study site, ARK-Agincourt and UKB-African and UKB-
Caribbean, with phenotype distributions of UACR (median) and covariables used in the study.

Dataset Sample size Country of residence 1Age (years) Males (%) 2UACR 3Albuminuria (%)

Non-resident in 4SSA 9,705

5CKD-Gen-AA 6,795 USA

6UKB-African 1,205 UK 51.8 48.5 1.10 (1.70) 20.0

7UKB-Caribbean 1,711 UK 52.8 59.6 0.93 (1.44) 16.4

8UKB-All 2,916 UK 52.4 55.0 1.01 (1.55) 17.9

Resident in SSA 8,970

9AWI-Nanoro 1,702 Burkina Faso 49.6 50.8 0.35 (0.44) 4.9

10AWI-Navrongo 1,548 Ghana 51.1 54.4 0.41(0.48) 6.7

11AWI-Nairobi 1,481 Kenya 48.8 54.0 0.63 (0.67) 11.4

12AWI-Agincourt 1,545 South Africa 54.3 59.8 0.59 (0.99) 14.1

13AWI-Dikgale 917 South Africa 52.1 68.3 0.63 (0.51) 10.4

14AWI-Soweto 766 South Africa 49.5 100.0 0.36 (0.57) 11.4

AWI-All 7,959 50.9 51.0 0.48 (0.51) 9.5

15ARK-Agincourt 1,011 South Africa 38.8 58.0 0.57 (0.94) 13.4

Total 17,664 50.3 52.6 0.59 (0.85) 11.9

1data reported as the mean.
2UACR: urine albumin: creatinine ratio: mg/mmol; reported as median (interquartile range).
3Albuminuria: UACR>3.0mg/mmol.
4SSA: Sub-Saharan Africa.
5CKD-Gen Consortium: African American Ancestry individuals. CKD-GEN-AA data are summary statistics of meta-analysis from Teumer et al. downloadable at the CKD-GEN consortium

website (http://ckdgen.imbi.uni-freiburg.de/), information relative to samples had been reported in relevant papers.
6UKB Biobank: Individuals of self-reported African Ancestry;
7self-reported Caribbean Ancestry;
8self-reported African and Caribbean Ancestry.
9Africa Wits -INDEPTH partnership for Genomic Studies (AWI): individuals of African Ancestry from 9,10West Africa; 11East Africa; 12-14South Africa.
15African Research on Kidney Disease (ARK) Study: South Africa

The bold row displays the combined totals for non-residents, residents, and the overall category
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Seven and two SNPs were identified in the 99% credible set using
FINEMAP in the MetaNONRES and MetaALL results, respectively
(Supplementary Table S3; Supplementary Figure S6).

Replication of previous findings

Replication analysis confirmed associations in three were
identified in the 95% credible setpreviously identified region in
THBS3, SPATA5L1/GATM, and ARL15 (Supplementary Table S3).

In the THBS3 region, the MetaALL meta-analysis rs370545 was
the lead SNP in our dataset, with a p-value of 1 × 10−04. However, a

conditional analysis using rs2974937 (lead SNP in CKD-Gen-EA)
resulted in a decrease in significance level (Pconditional_analysis = 0.85).
This suggests that the association in the THBS3 region was driven by
rs2974937 in MetaALL even though it was not the lead SNP in this
region (Supplementary Table S4; Supplementary Figure S7).

In the ARL15 region, a statistically significant association signal
was observed in MetaSSA (rs1664781, p = 1.8 × 10−04). Conditional
analysis using rs1694068 (lead SNP in CDK-Gen-EA) revealed a
reduction in p-value for rs1664781 (Pconditional_analysis = 0.87),
suggesting that rs1694068 and rs1664781 are in LD thus
confirming the association in this region (Supplementary Table
S4; Supplementary Figure S8).

FIGURE 2
Manhattan plot—GWAS of UACR in the (A)MetaSSA (B)MetaNONRES (C)MetaALL datasets using the fixed effect model. Lead genome-wide significant
SNPs (P < 5 × 10−08) and gene annotations are highlighted.
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In the SPATA5L1/GATM region, the MetaALL meta-analysis
identified rs1694067 as the lead SNP in this region with a p-value of
7.0 × 10−05. Furthermore, the lead SNP rs1153847 identified in CKD-
Gen-EA, was present in our dataset, and its association was
replicated (PBonferoni_adjusted = 0.04). For the window-based
replication, a conditional analysis using rs2467858 (genome-wide
significant SNP in CKD-Gen-EA), a reduced p-value was observed
(Pconditional_analysis = 0.87) confirming rs1694067 and rs2467858 are
in LD and replicated the CKD-Gen signal. (Supplementary Table S4;
Supplementary Figure S9).

Polygenic score analyses

The variance explained by the PGS for UACR residuals was
between 0% and 0.82%. PGS constructed using the betas from CKD-
Gen-EA and CKD-Gen-MA performed better for the non-SSA
resident datasets, particularly in the UKB-African, showing the
best predictivity (% variance: 0.82, p = 1 × 10−04) and statistically
significant correlation between the PGS and the UACR residual
(Figure 4; Supplementary Table S6).

Using the PGS constructed from CKD-Gen-MA, ARK-
Agincourt (% variance: 0.61, p = 0.01) and AWI-Agincourt (%

variance: 0.58, p = 0.002) demonstrated better predictivity in SSA
populations. PGS constructed from CKD-Gen-AA did not improve
the variance explained. Variance explained was lower using PGS
constructed from CKD-GEN-AA than CKD-Gen-MA or CKD-
Gen-EA.

Discussion

This study is the first GWAS for UACR conducted in Sub-
Saharan African populations. Two genomic regions were identified
to be significantly associated with UACR among 8,970 participants
from West, East, and Southern Africa and among 9,705 non-
resident African-ancestry participants from the UK Biobank and
CKD-Gen Consortium.

For the first locus, the SNP rs9505286 reached genome-wide
significance in resident African individuals MetaSSA and is located in
the intronic region of BMP6. eQTLs in LD with rs9505286 were found
to be associated with expression of two genes, namely bone
morphogenetic protein 6 (BMP6) and ras-responsive element
binding protein 1 (RREB1). Both genes are plausibly linked with
kidney disease. BMP6 encodes a secreted ligand of the transforming
growth factor (TGF-beta) superfamily of proteins, of which TGF-β1 is

FIGURE 3
Regional plot using LocusZoom of genome-wide significant SNPs found in meta-analyses using the fixed effect model, (A) rs9505286 from the
result of MetaSSA, (B) rs9966824 from the result MetaNONRES (C) rs9966824 from the result MetaALL.
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one of themost important regulators of kidney fibrosis, the pathological
hallmark of irreversible loss of kidney function in CKD (Dendooven
et al., 2011; Jenkins and Fraser, 2011). TGF-B1 is highly expressed in
various fibrotic kidney diseases, including diabetic nephropathy (DN),
hypertensive nephropathy, obstructive kidney disease, autosomal
dominant polycystic kidney disease, immunoglobulin A
nephropathy, crescentic glomerulonephritis, and focal segmental
glomerulosclerosis. Because of its pivotal role in mediating kidney
fibrosis, TGF-B1 is a potential target for drug discovery, and these
results point towards similar potential in African populations for further
exploration. RREB1, initially identified as a repressor of the
angiotensinogen gene, is associated with type 2 diabetes in African
Americans with end stage kidney disease (Bonomo et al., 2014). RREB1
polymorphisms have been shown to interact with APOL1, and are
implicated in fat distribution and fasting glucose, a potential
explanation for the association with type 2 diabetes. As obesity and
type 2 diabetes prevalence emerge in many African communities
undergoing rapid sociodemographic transition, these findings must
inform future work (Bonomo et al., 2014). Unfortunately, neither of the
eQTLs has strong LD support with the lead SNP rs9505286 (see
Supplementary Table S5).

Variability of kidney function, confounding factors and allele
frequency differences between datasets may explain why the
rs9505286 signal was not replicated in MetaALL or MetaNONRES
(Marigorta et al., 2018).

For the second locus, the SNP rs73404549 was found to be
statistically significant in non-resident individuals with African
Ancestry (MetaNONRES) and overall (MetaALL), but not in Sub-
Saharan African individuals (MetaSSA). This can be explained by
the fact that the variant allele of rs73404549 is extremely rare or
absent in East and South African populations. This SNP was found
to be in LD with rs334, the sickle cell trait mutation (HbS) in the
HBB gene. The HbS mutation has been linked to malaria resistance
among heterozygotes, with differences in allele frequency attributed
to variations in selection pressures between Bantu-speaking
populations in West and South/East Africa (Gurdasani et al.,
2019; Choudhury et al., 2020). Notably, sickle cell trait and
rs334 had been associated with various kidney function (eGFR)
and kidney disease traits, including albuminuria, and chronic and
end-stage kidney disease in African, African American and US
Hispanic/Latino populations (Naik et al., 2014; Gurdasani et al.,
2019; Fatumo et al., 2020; Masimango et al., 2022). Furthermore, an
interaction between APOL1 high-risk genotypes and the sickle cell
trait enhances the risk for low eGFR (Masimango et al., 2022).

In addition to the HBB region, our GWAS revealed
transferability of three previously identified signals. Of the
60 UACR-associated loci identified in European and Multi-
Ancestry studies, only three were replicated, including variants in
GATM. This region was also associated with eGFR in a Ugandan
population (Fatumo et al., 2020). We also replicated the association
with ARL15 in the region of chromosome 1 ARL15 is a regulator of
Mg2+ transport thereby promoting the complex N-glycosylation of
cyclin M proteins (CNNM 1-4) and could play a role in the
pathogenesis of hypertension mediated via altered tubular
handling of magnesium in the kidney (Zolotarov et al., 2021).

Allelic heterogeneity is high in African ancestry populations, as
demonstrated by the high genetic diversity in our study (Supplementary
Figure S1). However, analysis of regional subgroups usingmeta-analysisT
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(residents of South, West, or East Africa) did not reveal significant
population-specific signatures (p < 5 x 10-8), likely due to small sample
sizes within these subgroups (Supplementary Figures S3I, 10A, B).
Interestingly, meta-analysis under a random-effects model that allows
for heterogeneity in allelic effects between regions (MetaALL

RE) did not
improve the detection of specific signals already observedwith the fixed-
effects methods for HBB (Supplementary Figure S11). Consequently,
the heterogeneity observed might be explained primarily by variations
in LD or environmental factors rather than by the effect of a specific
allele, such as the presence or absence of sickle cell trait
(Nikolakopoulou et al., 2014; Kuchenbaecker et al., 2019;
Choudhury et al., 2020).

The transferability of PGS developed using the effect sizes
quantified in three previous association studies in European
ancestry, African ancestry and multi-ancestry populations showed
limited predictability, explaining less than 1% of the variability in
UACR. PGS in resident African populations (AWI-Gen and ARK)
explained between 0.58% and 0.60% of the variance of UACR
compared to UKB-African, where best prediction was observed
(0.80%). The poor predictability of UACR using summary
statistics derived from African Americans was likely due to the
small sample size of the discovery dataset. Unfortunately, there have
been few studies on PGS approaches to compare findings with, and
the genetic heritability of UACR is relatively low, estimated at 4.3%
(Teumer et al., 2019).

The limited transferability of PGS and previous GWAS signals
across ancestral groups could be due to differences in genetic
architecture and/or pleiotropic effects. Different demographic
histories and genetic selection pressures between European and
African populations could modify the ability to replicate previous
GWAS results due to differences in allele frequencies between non-
African and African populations, with generally lower LDs in
African genomes. Environmental factors and variability in the
prevalence and aetiology of kidney and disease-related risk factors
such as diabetes and hypertension (Fatumo et al., 2020) could also
influence the genetic architecture of kidney disease in Africans
populations (Limou et al., 2014; Teumer et al., 2019; Brandenburg
et al., 2022b). Selection pressures have increased the frequencies of
APOL1 kidney risk variants and HbS due to their protective
properties in areas of Africa where trypanosomiasis and malaria
are endemic. This may have contributed to shaping genetic
susceptibility to kidney disease in African individuals. In our
study, the APOL1 gene region did not exhibit significant
associations with UACR. The indel rs71785313 was not
imputed using the African Sanger reference for imputation, and
a specific study had previously been published to describe APOL1
variant distribution in the AWI-Gen dataset using other
imputation panels, but the locus did not reach genomic
significance (5 x 10 -8) for association with eGFR and UACR
(Brandenburg et al., 2022b).

FIGURE 4
Percent variance (r2) explained between PGS and residual phenotypes computed using age, sex and 5 PCs. Key- The negative relationship between
PGS and the phenotype in the result of the linear model, *p < 0.05, **p < 0.01 and ***p < 0.001. Details in Supplementary Table S6.
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While the burden of CKD in SSA is high, it is noteworthy that no
prior GWAS on UACR has been conducted on the continent.
Despite its uniqueness, our study is limited by its relatively
modest sample size, which impacts statistical power to detect
small-effect associations reaching genome-wide significance
thresholds. Kidney and disease markers were measured at a
single time point, and spot urine albumin and creatine levels are
sensitive to incident infections and other environmental factors that
could affect the prevalence of albuminuria.

It is important to note that our study populations are mainly
treatment naïve in relation to kidney disease and other
cardiometabolic conditions, which may be an advantage in
detecting genetic associations (Pereira et al., 2021). Other studies,
based on lipid-associated loci, attributed non-transferability of
associated loci to pleiotropic effects, gene-environment
interactions, and also to variability in allele frequencies and LD
patterns (Kuchenbaecker et al., 2019; Choudhury et al., 2022), as we
hypothesize for UACR.

In conclusion, this study describes genetic associations with
UACR in a unique SSA cohort and non-resident individuals with
African ancestry. CKD in African populations remains understudied
but from available data, hypertension, rather than diabetes is the
most commonly associated risk factor and in some regions, up to
60% of people with CKD do not have an associated “traditional” risk
factor common to high-income settings, suggesting alternate
underlying molecular pathways or aetiologies for CKD
(Kalyesubula et al., 2018; Nakanga et al., 2019; Muiru et al.,
2020). Our study identified two novel SNPs associated with
UACR in populations of African ancestry. We further replicated
three known UACR-associated loci. Regional genetic diversity due
to different selection pressures appear to play a role in the genetic
aetiology of CKD across the African continent. These factors likely
contribute to the limited transferability of previous association
signals and the poor transfer of polygenic scores developed in
non-African populations to African populations. Larger genomic
studies are necessary to better understand the genetic architecture of
kidney function and chronic kidney disease across different African
populations and inform region-specific kidney risk profiles. As
demonstrated in this study, the low genetic heritability of UACR
limits the predictive power of polygenic score for kidney disease in
our setting. It is critical for future research to address these gaps by
modelling integrative risk scores that incorporate locally relevant
clinical risk factors that are powerful predictors of kidney disease,
multiple kidney phenotypes (eGFRcystatin C, eGFRcreatinine,
eGFRcreatinine+cystatin C, albuminuria, blood urea nitrogen), using
multi-omics (Eddy et al., 2020), and the impacts of African-
specific genetic risk for kidney disease, such as APOL1 high-risk
genotypes and sickle cell trait or disease (Naik et al., 2014; Friedman
and Pollak, 2016; Brandenburg et al., 2022b).
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